Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
JAMA Netw Open ; 5(11): e2239661, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2094124

ABSTRACT

Importance: Contact tracing is a core strategy for preventing the spread of many infectious diseases of public health concern. Better understanding of the outcomes of contact tracing for COVID-19 as well as the operational opportunities and challenges in establishing a program for a jurisdiction as large as New York City (NYC) is important for the evaluation of this strategy. Objective: To describe the establishment, scaling, and maintenance of Trace, NYC's contact tracing program, and share data on outcomes during its first 17 months. Design, Setting, and Participants: This cross-sectional study included people with laboratory test-confirmed and probable COVID-19 and their contacts in NYC between June 1, 2020, and October 31, 2021. Trace launched on June 1, 2020, and had a workforce of 4147 contact tracers, with the majority of the workforce performing their jobs completely remotely. Data were analyzed in March 2022. Main Outcomes and Measures: Number and proportion of persons with COVID-19 and contacts on whom investigations were attempted and completed; timeliness of interviews relative to symptom onset or exposure for symptomatic cases and contacts, respectively. Results: Case investigations were attempted for 941 035 persons. Of those, 840 922 (89.4%) were reached and 711 353 (75.6%) completed an intake interview (women and girls, 358 775 [50.4%]; 60 178 [8.5%] Asian, 110 636 [15.6%] Black, 210 489 [28.3%] Hispanic or Latino, 157 349 [22.1%] White). Interviews were attempted for 1 218 650 contacts. Of those, 904 927 (74.3%) were reached, and 590 333 (48.4%) completed intake (women and girls, 219 261 [37.2%]; 47 403 [8.0%] Asian, 98 916 [16.8%] Black, 177 600 [30.1%] Hispanic or Latino, 116 559 [19.7%] White). Completion rates were consistent over time and resistant to changes related to vaccination as well as isolation and quarantine guidance. Among symptomatic cases, median time from symptom onset to intake completion was 4.7 days; a median 1.4 contacts were identified per case. Median time from contacts' last date of exposure to intake completion was 2.3 days. Among contacts, 30.1% were tested within 14 days of notification. Among cases, 27.8% were known to Trace as contacts. The overall expense for Trace from May 6, 2020, through October 31, 2021, was approximately $600 million. Conclusions and Relevance: Despite the complexity of developing a contact tracing program in a diverse city with a population of over 8 million people, in this case study we were able to identify 1.4 contacts per case and offer resources to safely isolate and quarantine to over 1 million cases and contacts in this study period.


Subject(s)
COVID-19 , Contact Tracing , Female , Humans , COVID-19/epidemiology , COVID-19/prevention & control , New York City/epidemiology , Cross-Sectional Studies , Quarantine
2.
JAMIA Open ; 5(2): ooac029, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1967897

ABSTRACT

Objective: New York City (NYC) experienced a large first wave of coronavirus disease 2019 (COVID-19) in the spring of 2020, but the Health Department lacked tools to easily visualize and analyze incoming surveillance data to inform response activities. To streamline ongoing surveillance, a group of infectious disease epidemiologists built an interactive dashboard using open-source software to monitor demographic, spatial, and temporal trends in COVID-19 epidemiology in NYC in near real-time for internal use by other surveillance and epidemiology experts. Materials and methods: Existing surveillance databases and systems were leveraged to create daily analytic datasets of COVID-19 case and testing information, aggregated by week and key demographics. The dashboard was developed iteratively using R, and includes interactive graphs, tables, and maps summarizing recent COVID-19 epidemiologic trends. Additional data and interactive features were incorporated to provide further information on the spread of COVID-19 in NYC. Results: The dashboard allows key staff to quickly review situational data, identify concerning trends, and easily maintain granular situational awareness of COVID-19 epidemiology in NYC. Discussion: The dashboard is used to inform weekly surveillance summaries and alleviated the burden of manual report production on infectious disease epidemiologists. The system was built by and for epidemiologists, which is critical to its utility and functionality. Interactivity allows users to understand broad and granular data, and flexibility in dashboard development means new metrics and visualizations can be developed as needed. Conclusions: Additional investment and development of public health informatics tools, along with standardized frameworks for local health jurisdictions to analyze and visualize data in emergencies, are warranted.

3.
MMWR Morb Mortal Wkly Rep ; 69(46): 1725-1729, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-1876240

ABSTRACT

New York City (NYC) was an epicenter of the coronavirus disease 2019 (COVID-19) outbreak in the United States during spring 2020 (1). During March-May 2020, approximately 203,000 laboratory-confirmed COVID-19 cases were reported to the NYC Department of Health and Mental Hygiene (DOHMH). To obtain more complete data, DOHMH used supplementary information sources and relied on direct data importation and matching of patient identifiers for data on hospitalization status, the occurrence of death, race/ethnicity, and presence of underlying medical conditions. The highest rates of cases, hospitalizations, and deaths were concentrated in communities of color, high-poverty areas, and among persons aged ≥75 years or with underlying conditions. The crude fatality rate was 9.2% overall and 32.1% among hospitalized patients. Using these data to prevent additional infections among NYC residents during subsequent waves of the pandemic, particularly among those at highest risk for hospitalization and death, is critical. Mitigating COVID-19 transmission among vulnerable groups at high risk for hospitalization and death is an urgent priority. Similar to NYC, other jurisdictions might find the use of supplementary information sources valuable in their efforts to prevent COVID-19 infections.


Subject(s)
Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , SARS-CoV-2 , Young Adult
4.
Vaccine X ; 10: 100134, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1587103

ABSTRACT

BACKGROUND: In clinical trials, several SARS-CoV-2 vaccines were shown to reduce risk of severe COVID-19 illness. Local, population-level, real-world evidence of vaccine effectiveness is accumulating. We assessed vaccine effectiveness for community-dwelling New York City (NYC) residents using a quasi-experimental, regression discontinuity design, leveraging a period (January 12-March 9, 2021) when ≥ 65-year-olds were vaccine-eligible but younger persons, excluding essential workers, were not. METHODS: We constructed segmented, negative binomial regression models of age-specific COVID-19 hospitalization rates among 45-84-year-old NYC residents during a post-vaccination program implementation period (February 21-April 17, 2021), with a discontinuity at age 65 years. The relationship between age and hospitalization rates in an unvaccinated population was incorporated using a pre-implementation period (December 20, 2020-February 13, 2021). We calculated the rate ratio (RR) and 95% confidence interval (CI) for the interaction between implementation period (pre or post) and age-based eligibility (45-64 or 65-84 years). Analyses were stratified by race/ethnicity and borough of residence. Similar analyses were conducted for COVID-19 deaths. RESULTS: Hospitalization rates among 65-84-year-olds decreased from pre- to post-implementation periods (RR 0.85, 95% CI: 0.74-0.97), controlling for trends among 45-64-year-olds. Accordingly, an estimated 721 (95% CI: 126-1,241) hospitalizations were averted. Residents just above the eligibility threshold (65-66-year-olds) had lower hospitalization rates than those below (63-64-year-olds). Racial/ethnic groups and boroughs with higher vaccine coverage generally experienced greater reductions in RR point estimates. Uncertainty was greater for the decrease in COVID-19 death rates (RR 0.85, 95% CI: 0.66-1.10). CONCLUSION: The vaccination program in NYC reduced COVID-19 hospitalizations among the initially age-eligible ≥ 65-year-old population by approximately 15% in the first eight weeks. The real-world evidence of vaccine effectiveness makes it more imperative to improve vaccine access and uptake to reduce inequities in COVID-19 outcomes.

5.
MMWR Morb Mortal Wkly Rep ; 70(37): 1284-1290, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1417365

ABSTRACT

COVID-19 vaccine breakthrough infection surveillance helps monitor trends in disease incidence and severe outcomes in fully vaccinated persons, including the impact of the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19. Reported COVID-19 cases, hospitalizations, and deaths occurring among persons aged ≥18 years during April 4-July 17, 2021, were analyzed by vaccination status across 13 U.S. jurisdictions that routinely linked case surveillance and immunization registry data. Averaged weekly, age-standardized incidence rate ratios (IRRs) for cases among persons who were not fully vaccinated compared with those among fully vaccinated persons decreased from 11.1 (95% confidence interval [CI] = 7.8-15.8) to 4.6 (95% CI = 2.5-8.5) between two periods when prevalence of the Delta variant was lower (<50% of sequenced isolates; April 4-June 19) and higher (≥50%; June 20-July 17), and IRRs for hospitalizations and deaths decreased between the same two periods, from 13.3 (95% CI = 11.3-15.6) to 10.4 (95% CI = 8.1-13.3) and from 16.6 (95% CI = 13.5-20.4) to 11.3 (95% CI = 9.1-13.9). Findings were consistent with a potential decline in vaccine protection against confirmed SARS-CoV-2 infection and continued strong protection against COVID-19-associated hospitalization and death. Getting vaccinated protects against severe illness from COVID-19, including the Delta variant, and monitoring COVID-19 incidence by vaccination status might provide early signals of changes in vaccine-related protection that can be confirmed through well-controlled vaccine effectiveness (VE) studies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/therapy , Humans , Incidence , Middle Aged , United States/epidemiology , Young Adult
6.
MMWR Morb Mortal Wkly Rep ; 70(19): 712-716, 2021 May 14.
Article in English | MEDLINE | ID: covidwho-1227231

ABSTRACT

Recent studies have documented the emergence and rapid growth of B.1.526, a novel variant of interest (VOI) of SARS-CoV-2, the virus that causes COVID-19, in the New York City (NYC) area after its identification in NYC in November 2020 (1-3). Two predominant subclades within the B.1.526 lineage have been identified, one containing the E484K mutation in the receptor-binding domain (1,2), which attenuates in vitro neutralization by multiple SARS-CoV-2 antibodies and is present in variants of concern (VOCs) first identified in South Africa (B.1.351) (4) and Brazil (P.1).* The NYC Department of Health and Mental Hygiene (DOHMH) analyzed laboratory and epidemiologic data to characterize cases of B.1.526 infection, including illness severity, transmission to close contacts, rates of possible reinfection, and laboratory-diagnosed breakthrough infections among vaccinated persons. Preliminary data suggest that the B.1.526 variant does not lead to more severe disease and is not associated with increased risk for infection after vaccination (breakthrough infection) or reinfection. Because relatively few specimens were sequenced over the study period, the statistical power might have been insufficient to detect modest differences in rates of uncommon outcomes such as breakthrough infection or reinfection. Collection of timely viral genomic data for a larger proportion of citywide cases and rapid integration with population-based surveillance data would enable improved understanding of the impact of emerging SARS-CoV-2 variants and specific mutations to help guide public health intervention efforts.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Adolescent , Adult , Aged , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL